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A B S T R A C T

Optimal Estimation (OE) methods can simultaneously estimate surface and atmospheric properties from remote
Visible/Shortwave imaging spectroscopy. Simultaneous solutions can improve retrieval accuracy with principled
uncertainty quantification for hypothesis testing. While OE has been validated under benign atmospheric con-
ditions, future global missions will observe environments with high aerosol and water vapor loadings. This work
addresses the gap with diverse scenes from NASA's Next Generation Airborne Visible Infrared Imaging
Spectrometer (AVIRIS-NG) India campaign. We refine atmospheric models to represent variable aerosol optical
depths and properties. We quantify retrieval accuracy and information content for both reflectance and aerosols
over different surface types, comparing results to in situ and remote references. Additionally, we assess un-
certainty of maximum a posteriori solutions using linearized estimates as well as sampling-based inversions that
more completely characterize posterior uncertainties. Principled uncertainty quantification can combine mul-
tiple spacecraft data products while preventing local environmental biases in future global investigations.

1. Introduction

Remote Visible/ShortWave InfraRed (VSWIR) imaging spectro-
meters map spectral radiance from 380 to 2500 nm (Schaepman et al.,
2009). Surface reflectance features in this interval reveal the chemistry
and composition of Earth's terrestrial domains (Asner et al., 2017; Jetz
et al., 2016; Ustin et al., 2004) and aquatic environments (Fichot et al.,
2015; Hochberg, 2011). Recognizing this potential, authorities such as
the National Academies NASA Earth Science Decadal Survey re-
commended new spectrometer observations with global coverage
(ESAS, 2018). Meanwhile, many national space agencies are im-
plementing orbital imaging spectrometers (Guanter et al., 2015;
Iwasaki et al., 2011; Labate et al., 2009). Space missions challenge the
imaging spectroscopy community to scale existing airborne campaigns
into global surface property maps. At first glance a global analysis
seems similar to local studies: first, calculate the calibrated radiance at
the sensor; then, retrieve atmosphere properties along with surface
reflectance spectra; and finally, interpret surface reflectance maps to
estimate physical, chemical, or compositional properties (Thompson

et al., 2018b).
In fact, global spectroscopy is challenging because errors in re-

flectance estimates can become systematic biases at the global scale
(Dudley et al., 2015). Elevations, biomes and latitudinal zones have
distinctive surface cover but also different atmospheric properties, and
both influence the measured radiance. Climatology is inadequate to
constrain atmospheric interference, so retrievals must estimate it from
the spectra themselves (Vermote and Kotchenova, 2008; Lyapustin
et al., 2012). High water vapor loadings in the presence of aerosols and/
or high solar zenith angles are particularly challenging. Aerosols create
spectrally-broad perturbations that augment or attenuate radiance de-
pending on the surface albedo, particle scattering, and particle ab-
sorption. These conditions are common in tropical environments and
polluted urban areas (Dubovik et al., 2002) which are underrepresented
in research on imaging spectrometer atmospheric correction. This risks
a significant reduction in data yield — or worse, systematic errors in
global surface property maps. Global missions will demand accurate
atmospheric correction, to minimize these biases in the first place, and
rigorous uncertainty predictions, so that multi-source maps can
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combine observations with different error profiles.
We address this challenge with Maximum A Posteriori (MAP) opti-

mization of a model combining the surface, atmosphere, and instru-
ment. Our prior research (Thompson et al., 2018c) adopts the Rodgers
et al. formalism (Rodgers, 1976, 1990, 1996, 2000) known as Optimal
Estimation (OE, Fig. 1). OE is just one of many iterative probabilistic
model inversion methods, and has been used for decades by atmo-
spheric remote sensing missions such as OCO-2 (Cressie, 2018), GOSAT
(Yoshida et al., 2011), SCIAMACHY (Frankenberg and Wagner, 2005),
and in future missions like MAIA (Xu et al., 2017). It finds parameters of
the surface and atmosphere that are most probable given the mea-
surement while accounting for noise and the strength of background
knowledge. The approach combines measurement information with
Bayesian statistical priors. Weak surface priors, which can be out-
weighed by measurement evidence, can resolve indeterminacy between
surface and atmospheric effects without biasing surface retrievals. Prior
distributions can also capture the patterns in dark vegetation or water
used by traditional heuristic aerosol algorithms; such constraints al-
ready appear in the measurable statistics of Earth's surface reflectance.
OE thus captures the benefits of conventional heuristic aerosol re-
trievals, exploiting similar properties while adding rigor and robust-
ness. Another advantage is the ability to incorporate information dis-
tributed across the entire VSWIR spectral range without pre-selecting
atmospheric retrieval windows. More recent work extends these
methods to the coastal ocean domain (Thompson et al., 2019).

This existing body of work demonstrates uncertainty models con-
sistent with the measured discrepancies between remote and in situ
field data. However, recent statistical research suggests potential for
further improvement (Cressie, 2018; Hobbs et al., 2017). Traditionally
OE uses locally-linear approximations of the probability density based
on closed-form Jacobian matrices (Rodgers, 2000). This enables fast
operational MAP retrievals via gradient ascent, and a linearized pre-
diction of posterior uncertainty. However, Cressie (2018) shows it is
more statistically consistent to treat posterior uncertainties in-
dependently from the estimated state. Other recent research aims to
surpass linearized uncertainties altogether. Markov Chain Monte Carlo
(MCMC) samples subtler structure, including bias, local minima, and
correlations in state estimates (Hobbs et al., 2017). More importantly,
there is a need to test OE retrievals and uncertainties in challenging
atmospheric environments with higher water vapor and aerosol load-
ings.

This manuscript addresses the gap with a large dataset spanning the
Indian subcontinent, acquired in 2015–2016 by NASA's Airborne
Visible Infrared Imaging Spectrometer, AVIRIS-NG (Thompson et al.,
2018a). The data is a microcosm of global diversity with a wide range

of surface types, biomes, latitudes, elevations, and atmospheric condi-
tions. Many scenes are tropical atmospheres with extreme aerosol and
water vapor (Babu et al., 2013). We fully characterize posterior errors
using MCMC sampling. We validate surface and atmosphere estimates
using field instruments, and evaluate spectrum quality metrics. This
illustrates the OE posterior predictive power and uncertainty for global
spectroscopy of Earth's surface. Section 2 briefly reviews conventional
atmospheric correction methods. Section 3 details the OE formalism,
the linearized and MCMC solutions, and our specific atmospheric and
surface modeling assumptions. Section 4 describes the field experiment,
which includes both ground truth field sites as well as retrieval quality
metrics calculated for over 20 diverse flightlines. Section 5 shows the
resulting spectral information content, comparisons with references,
and spectra revealing significant improvements in retrieval perfor-
mance vis a vis traditional approaches. Finally, we discuss implications
for future missions and avenues for future research.

2. Background

Imaging spectrometer atmospheric correction has a decades-long
tradition reviewed thoroughly in Gao et al. (2009) and Thompson et al.
(2018b). Historically researchers use different variants for land and
water (Wang et al., 2010), and there is ongoing research into unified
methods (Thompson et al., 2019). We will pass over the important
category of empirical or scene-based approaches that do not easily scale
for global data (Bernstein et al., 2005; Reinersman et al., 1998; Conel
et al., 1987), and focus on algorithms using physics-based radiative
transfer models that apply to all conditions. Here, standard practice for
both land and water is a sequential approach that evolved from multi-
band instruments. One first estimates the atmospheric state using fea-
tures of the radiance spectrum, and then inverts the radiance with an
algebraic function of optical parameters (e.g. atmospheric transmission
and path radiance) from a precalculated lookup table. Codebases im-
plementing this method for spectroscopy include ATREM (Gao et al.,
1993), ATCOR (Richter and Schläpfer, 2002), and FLAASH (Perkins
et al., 2012). Conventional methods work well for airborne investiga-
tions with clear skies and near-nadir observation geometries.

Both surface reflectance and atmospheric effects influence the ra-
diance measurement in every channel. It is easiest to disentangle them
for atmospheric terms with distinctive signatures, such as gas absorp-
tions. However, spectrally smooth interferences such as aerosols do not
have distinctive signatures apart from their influence on H2O and sur-
face reflectance retrievals. Multiband heuristic approaches used in the
past for deriving aerosols (Guanter et al., 2008; Higurashi and
Nakajima, 1999) can work inconsistently in situations with high spec-
tral diversity. Additionally, global spectroscopic data for ecosystem
observations will likely have spatial sampling near ∼30m (ESAS,
2018), too coarse to resolve cast shadows needed for dark pixel
methods (Schläpfer et al., 2018). The diversity of global environments
also precludes common methods relying on green vegetation (Teillet
and Fedosejevs, 1995) or open-water assumptions (Wang et al., 2010).
The resulting errors can thwart ecosystem trait analyses. Fig. 2 shows
two examples from the AVIRIS-NG India campaign. The top panel
shows a high-quality remote retrieval of vegetation reflectance. It re-
veals critical ecosystem traits through subtle shapes and slopes of pig-
ment absorptions, canopy structure, and chemistry. The bottom panel is
a spectrum from a city park with incorrect compensation for the local
aerosol conditions. Errors in the resulting reflectance include incorrect
slopes in the visible range due to uncorrected path radiance, excessive
residual spikes due to H2O vapor absorption, and loss of spectral con-
trast.

The resulting distortions can impact global ecosystem mapping
(Thompson et al., 2018b). Fig. 3 shows global MODIS water vapor (Gao
and Kaufman, 2003; King et al., 2003) and Aerosol Optical Depth, or
AOD (Levy et al., 2013), as an annual average beginning in June 2017.
Partitioning by land cover class (Friedl et al., 2010) reveals very
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Fig. 1. Optimal Estimation is a Bayesian method to interpret remote mea-
surements with a combined model of surface reflectance, atmosphere, and
potentially instrument effects. We model the entire VSWIR spectral interval,
incorporating radiative transfer physics and statistical prior information.
Aircraft image courtesy NASA.
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different distributions in different biomes; local environmental condi-
tions determine the species that flourish at each region and elevation.
As a consequence, errors due to atmospheric conditions will not be
uniformly distributed across biomes and could distort trends in canopy
traits. Examples include the combination of scattering with high aerosol
loading in humid tropical environments, which can be difficult to cor-
rect accurately using an average climatology alone. Partly inundated
surfaces, ice and snow, or surfaces with vegetation and other liquid
absorptions, can interfere with the primary gas signatures used for H2O
estimation (Thompson et al., 2015). To the degree that existing se-
quential spectroscopic correction algorithms suffer from these chal-
lenges, it is because inadequate foreknowledge of surface reflectance
limits the scope and accuracy of their atmospheric estimation.

Simultaneous estimation of surface and atmosphere, used already in
some multi-band observations (Dubovik et al., 2011; Lyapustin et al.,
2012), could address these challenges to prevent biases in maps of
ecosystem functional properties and chemistry. These algorithms can
represent statistical constraints on physically-plausible reflectances,
optimizing surface, gas, and aerosol parameters together. A combined
solution disentangles these influences by formalizing the analysts'
physical intuition about features such as those in Fig. 2. Bayesian MAP
model inversion algorithms such as GRASP (Dubovik et al., 2014) can
predict posterior uncertainty to enable a principled fusion of data
downstream from multiple times and/or observing conditions. MAP
inversions were pioneered in domains with few bands (Dubovik et al.,
2011), and for constrained surface types such as instrument char-
acterization (Kuhlmann et al., 2016), aerosol retrievals (Hou et al.,
2016, 2017) and tree canopies (Verhoef et al., 2017). They have re-
cently been generalized for imaging spectrometers over more complex
surfaces (Thompson et al., 2018c; Thompson et al., 2019). The next
section details our implementation and some modifications to address
challenging atmospheric conditions.

3. Method

Optimal Estimation (OE) models the measured radiance y as a
vector-valued function y= f(x)+ ϵ. Here x is a state vector of instru-
ment, surface and atmospheric properties, x=[x1,…,xn]T, and ϵ is

random observation noise (Rodgers, 2000). We refer the reader to
Thompson et al. (2018c) and Thompson et al. (2019) for more detail on
Optimal Estimation for imaging spectroscopy.

3.1. Single spectrum MAP estimation

The basic MAP inversion operates on a single spectrum. We de-
compose the posterior probability p(x|y) via Bayes' rule, with multi-
variate normal probability density functions:
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Here xa and Sa are the mean and covariance of a prior distribution
over state vectors. Sϵ is the observation covariance. This term includes
uncertainties due to instrument noise, Sy, and from unknowns in the
model that are not estimated as part of x. We approximate uncertainty
locally in first order using Kb, the Jacobian matrix of partial derivatives
of unretrieved model unknowns with respect to measured radiance
(Rodgers, 2000):

= +S S K S Kϵ y b b b
T (2)

The inversion initializes the state vector to the prior mean and then
maximizes posterior probability by iterative gradient ascent. Each
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Fig. 2. Poor aerosol corrections cause distinctive distortions of vegetation
spectra. The top panel shows a high-quality remote retrieval of vegetation re-
flectance from the AVIRIS-NG India Campaign (from scene
ang20160102t072251). The bottom panel illustrates distortions induced from
inaccurate compensation for atmospheric aerosol effects (from scene
ang20160107t060057).
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Fig. 3. Annual average MODIS AOD and water vapor estimates partitioned by
land cover classification, confirming that different biomes are associated with
different atmospheric environments. Error bars show the median and central
half of locations for each land cover classification: Evergreen Needleleaf Forest
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Barren/Desert (B).
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iteration updates the gradients by linearizing f(x) about the current
state. Since p(y) is constant we use the objective function χ2:

= − − + − −− −χ x y f x S y f x x x S x x( ) 1
2

( ( )) ( ( )) 1
2

( ) ( )T
a

T
a aϵ

2 1 1
(3)

Minimizing eq. 3 maximizes the log probability of the observation
given the state, optimally balancing prior knowledge with measurement
information. Upon convergence, first order Taylor expansion defines a
posterior covariance:

̂ = +− − −S K S K S( )ϵ
T

a
1 1 1 (4)

where K is the Jacobian matrix of partial derivatives of the measure-
ment with respect to the state vector. Traditionally, and in previous
work (Thompson et al., 2018c), K is defined using the converged state
vector. However, Cressie (2018) notes that this posterior uncertainty is
inconsistent with its delta rule derivation. Cressie suggests estimating
posterior uncertainty with a state-independent K, such as one based on
the prior mean xa. We will use the Cressie (2018) definition here. We
calculate K using analytical derivatives for surface parameters and fi-
nite difference methods for the atmospheric terms (Table 1).

Ideally the designer constructs priors and observation uncertainties
using representative historical data. In practice, there is some sub-
jectivity in parameterizing fitting these distributions. Moreover, certain
investigations may intentionally compromise optimality for specific
objectives. For example, a weak surface prior may produce reflectance
estimates with embedded measurement noise. This may still be favor-
able if it preserves precise channelwise relationships for fitting radio-
metry correction factors or recovering band positions at tiny fractions of
a percent (Thompson et al., 2018c). The diagnostic averaging matrix A
(Rodgers, 2000) can assist the designer in making these decisions and
interpreting system behavior. It represents the fraction of the retrieval
result attributable to the measurement rather than the prior. It is for-
mally defined as the matrix of partial derivatives ̂∂ ∂ ∗x x/ , the differential
change in the estimated state vector with respect to the change in the
“true” underlying state vector x∗:

= + −A S K KS K S K( )a
T

a
T

ϵ
1 (5)

Each diagonal element of A gives the Degrees of Freedom (DOF) for
that parameter. A DOF of unity means the converged estimate is only
sensitive to measurement information. A value of zero indicates that the
entire result comes from the prior. The mean DOF across state vector
elements is a useful scalar indicator to guide modeling decisions and
evaluate the utility of alternative observing methods.

The true posterior uncertainty need not be Gaussian. Fig. 4 illus-
trates a non-Gaussian surface with local minima. The gradient ascent
begins at the initial guess xinit and converges to the local maximum ̂x .
The linearized posterior error estimate, shown here as an elliptical

isocontour representing ̂S , describes uncertainty near the solution. The
next section uses MCMC for a more complete estimate.

3.2. Monte Carlo sampling procedure

Markov Chain Monte Carlo (MCMC) constructs a Markov Chain that
matches the true posterior distribution in the limiting case of many
iterations (Ripley, 1987; Gilks et al., 1996). Running the chain for many
iterations samples from p(x|y), the probability of the state vector given
the measurement. We use the Metropolis/Hastings method (Ripley,
1987; Gilks et al., 1996), defining a function g(x) proportional to the
desired probability density. Eq. 1 yields:

= − − − − − −− −g e ex( ) y f x S y f x x x S x x( ( )) ( ( )) ( ) ( )ϵ
T

a
T

a a
1 1

(6)

The posterior density fills a tiny fraction of the high dimensional
state space, so we initialize the Markov Chain using a random draw x0
from the OE MAP posterior uncertainty. This begins the sampling in the
proper neighborhood while permitting discovery of alternative minima.
Each subsequent iteration t draws a candidate sample x′ from a proposal
distribution centered on the current state xt, with a covariance based on
the linearized uncertainty prediction ̂S . Denoting a multivariate
Gaussian distribution with mean μ and covariance matrix Σ as μ( , Σ)N ,
we draw:

̂′ ∼ kx x S( , )tN (7)

Following community practice and theory we use a scaling factor k
of 0.02 to achieve an efficient acceptance rate of 25–50% (Bedard,
2008). The Metropolis Hastings criterion draws a uniform random
number I∈ (0,1), accepting the candidate when:

< = ′I q q g gx xmin ( , 1) for ( )/ ( )t (8)

If the candidate is accepted, xt+1= x′. Otherwise, xt+1= xt. We set
the posterior density to zero outside the range of the atmospheric
lookup table, but we do not bound surface terms because slight negative
reflectances can still produce well-defined radiance values. Extremely
dark channels commonly dip below zero due to natural noise fluctua-
tions. We draw 20,000 samples in each of the simulations described
below, with periodic random restarts every 2000 iterations and a “burn-
in period” of 200 iterations (Gelman et al., 2011) following every re-
initialization. This ensures that the samples explore the entire solution
space. Collectively, the samples estimate the posterior uncertainty
while respecting any locally-nonlinear response of the forward model.

3.3. Atmospheric and surface models

Optimal Estimation predicts measured radiances with a “forward

Table 1
Notation conventions. Boldface indicates vectors, vector-valued functions, and
matrices. We treat all vectors as columns for matrix algebra.

Symbol Interpretation

̂S Posterior covariance of state vector

Sa Covariance of state vector prior distribution
Sϵ Covariance of random observation noise

̂S Estimated posterior covariance at solution

x Complete state vector, x=[xSURF,xATM]
xa Mean of state vector prior distribution
xATM Free parameters of atmosphere (H2O and aerosols)
xSURF Free parameters of surface (reflectance in each channel)
xH2O Precipitable water vapor (cm)
xAOD550 Aerosol Optical Depth at 550 nm (km)

̂x Estimated state vector
y Radiance measurement in each channel, μW nm−1 cm−2 sr−1

χ2 Cost function
σp Regularization shrinkage coefficient for surface prior

Fig. 4. The gradient ascent begins at the initial guess xinit and converges to the
local maximum ̂S . The linearized posterior error estimate, shown here as an
elliptical isocontour representing ̂S , describes uncertainty in terms of gradients
near the solution.
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model” of the instrument, atmosphere, and the surface. In principle the
retrieval can estimate any forward model parameter. Our state vector is
similar to Thompson et al. (2018c) with surface parameters xSURF and
atmospheric parameters xATM. We estimate instrument noise using a
comprehensive physics-based model of the instrument optical, detector,
and electronic efficiency (Thompson et al., 2018c). The noise is
channel- and signal-dependent, and recalculated for each spectrum.

The surface state xSURF∈ℝ425 has a separate reflectance value for
each of AVIRIS-NG's 425 instrument channels. Following Thompson
et al. (2018c), our surface prior is a collection of multivariate Gaussian
components. We begin by fitting 8–10 components to a diverse library
of surface reflectances that collectively describe features of physically
plausible spectra. K-means clustering specifies the component centers,
and Expectation Maximization (EM) fits the covariances. Unlike prior
work, we form additional components using random geographic mix-
tures (Keshava and Mustard, 2002) drawn from the endmember spectra
in the library. This helps the system model intermediate cases of frac-
tional cover by multiple materials. In all cases, heavy numerical reg-
ularization (Theiler, 2012) further broadens these distributions so that
they can fit spectral features which do not occur in the library. Speci-
fically, we use a shrinkage term σp that scales the covariance matrix
diagonal, interpolating between the original covariance S and the
identity matrix I according to (1− σp)S+ σpI. We typically use small
values such as η=10−6 within key atmospheric features, promoting
smoothness in (for example) water absorption bands, and larger values
elsewhere. The resulting prior is intentionally weak, preventing non-
physical step discontinuities without biasing the retrieved reflectance
features. Several regions are particularly useful for atmospheric esti-
mation: the UV range from 300 to 400 nm, which provides important
aerosol information; and the near-infrared range from 900 to 1200 nm
that includes water vapor atmospheric absorption features. We hy-
pothesize a sufficiently sensitive instrument might draw additional
aerosol information from distortion of these near-infrared water ab-
sorption features. We use the Euclidean-nearest component distance as
the prior.

Our atmospheric model also builds on Thompson et al. (2018c). We
first translate the observed radiance spectrum ℓobs=[ℓλ1,…, ℓλm]T into
a top of atmosphere reflectance ρobs which normalizes for the incoming
solar illumination using the zenith extraterrestrial solar downward ir-
radiance eo, and a factor ϕo representing the cosine of the solar zenith
angle. We adopt a convenient Lambertian decomposition of ρobs:

= = +
−

ρ π
ϕ

ρℓ t x
s xe

·
1 ( · )aobs

obs

o

SURF

SURFo (9)

with the · symbol signifying element-wise multiplication. The path re-
flectance is ρa, the spherical sky albedo is s, and t represents the at-
mospheric diffuse and direct transmittance. The surface reflectance it-
self is the surface state ρSURF. We calculate these terms for a grid of
atmospheric state values using the RTM and cache them in a lookup
table. Given a candidate atmospheric state, we perform multilinear
interpolation within this table to set the remaining terms of Eq. 9. We
determine atmospheric parameters using conventional band ratio
methods described in Thompson et al. (2018c), and then initialize
surface reflectance by algebraic inversion. The atmospheric state xATM
contains the total water vapor column xH2O in g cm−2, and three scalar
values describing the extinction due to different types of atmospheric
boundary layer aerosols. The three options are not intended as actual
species classifications, but rather as representative optical properties
that span the space of likely distortions.

We include three aerosols in our simulations: Type A, derived from
soot properties; Type B, from dust; and Type C, based on sulfate par-
ticles. These choices represent distinct aerosol microphysical and op-
tical properties (Table A.6). Soot is highly absorbing, dust is moderately
absorbing, and sulfate, which uses a relative humidity of 70%, is
strongly scattering. In terms of particle size, these choices range from
small (soot) to moderate (sulfate, ∼0.1 μm) and large (dust, ∼1 μm).

Soot and sulfate are spherical particles, while dust is nonspherical. Our
choices therefore enable a variety of spectral extinctions (through the
Angstrom exponent, which is primarily a measure of particle size),
single scattering albedos (SSAs, characterized by imaginary part of re-
fractive index in addition to size), and phase functions (including
sphericity in addition to size and refractive index). Mixing these pro-
duces scattering and absorption for diverse particle types and vertical
profiles, acting as a structured error term to improve reflectance fide-
lity.

Our state vector represents the total aerosol effect with the aerosol
optical depth at 550 nm for each signature: τA, τB, and τC. Fig. 5 shows
the scattering coefficients, absorption coefficients, and asymmetry
parameters, written bsca, babs, and a respectively (Lin et al., 1973). We
normalize them so that the combined total extinction is unity at
550 nm, and the product with AOD values at 550 nm forms the spec-
trally-defined scattering and absorption coefficients. We also para-
meterize aerosol scattering phase functions with an asymmetry para-
meter formed by the weighted average of the three signatures.

In summary, we define four atmospheric state variables: water
vapor, and optical thickness parameters for each aerosol profile, pro-
ducing a state vector with 429 elements. We set the H2O vapor prior to
be broad and uninformed. We give each aerosol type a climatological
prior appropriate for its region, as determined by nearby AERONET
data. Specifically, we divided the continent into climatological latitude
and longitude areas and accumulated means and standard deviations of
AOD and SSA from AERONET observations during the campaign.
Appendix A provides additional detail on the procedure. This was a
general purpose compromise and regional studies might use even more
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specific climatologies such as those of Babu et al. (2013). One could
also seed priors using coincident measurements from orbital data. We
calculate coefficients for the lookup table using the MODTRAN 6.0
Radiative Transfer Model (Berk et al., 2014). We assume they are
homogenously distributed within the bottom 3 km of the atmospheric
column; extreme deviations might favor other assumptions.

4. Experimental approach

Our field validation experiments compared OE performance with
conventional methods, evaluating predictive uncertainty with both
linearized and Monte Carlo estimation. We analyzed the 2015–2016
segment of an AVIRIS-NG campaign in India. This campaign was a
collaboration between the National Aeronautics and Space
Administration (NASA) and the Indian Space Research Organization
(ISRO) (Thompson et al., 2018a). The AVIRIS-NG airborne imaging
spectrometer flew onboard an ISRO King Air B-200 aircraft acquiring
downward-looking spectral radiance cubes from 380 to 2500 nm at
5 nm spectral resolution. The aircraft visited sites across the sub-
continent over several seasons; at the time of this writing it may be the
most geographically diverse airborne imaging spectrometer campaign
yet conducted. Acquisitions showed a range of atmospheric conditions
from polluted urban skies to clear Himalayan conditions; they included
elevations from sea level to 6 km and latitudes ranging from the tropics
to mid latitudes. Scene content consisted of natural biomes including
forests, wetland estuaries, barren desert, grassland, glaciers and bare
geology. There were many examples of developed areas with urban
environments, agriculture, and the wildland interface.

Our first experiment validated the inversion algorithm using in-situ
data at selected sites (Table 2). Site Des-I was a calibration/validation
exercise at Desalpar playa, a bright uniform soil surface with a stable
reflectance (Fig. 6). AVIRIS-NG overflew the site at an altitude of 5 km
providing approximately 5m ground sampling distance. Coincidently
with the overflight, a field team acquired surface reflectance mea-
surements with handheld Analytical Spectral Devices, Inc. (ASD) field
spectroradiometers. The team traversed a grid pattern acquiring data
and periodically returning to a leveled reference panel against which
the target radiances were ratioed to calculate an area-average surface
reflectance. Previous work evaluates this acquisition using conventional
atmospheric modeling strategies (Babu et al., 2019), validating the field
data and the efficacy of MODTRAN 6.0 vis a vis vector codes like 6S.

Sites KareI, Kar-II, and Kar-III were soil and vegetation spectra from
the Karnataka region, a rural area near a large national forest. This was
a contrasting surface with more vegetation. The AVIRIS-NG spatial
sampling was approximately 5m. A ground team visited several agri-
cultural fields in the flightline, measuring atmospheric aerosol optical
depth with Microtops-2 sunphotometers as well as plant canopy re-
flectance. We did not expect the reflectances to match AVIRIS-NG di-
rectly, since the fields were not uniform and the in situ data showed
variable canopy density and condition. The AVIRIS-NG sampling of 5m

included the soil around each plant, a situation typically addressed with
linear areal models (Keshava and Mustard, 2002). Standard practice
uses Multiple Endmember Spectral Unmixing (MESMA), a linear model
comprised of a small set of one to three endmembers together with
photometric shade in proportion to the areal coverage of each (Roberts
et al., 1998). The most common general purpose model uses soil, non-
photosynthetic vegetation, and green vegetation endmembers
(Dennison and Roberts, 2003). To upscale the in situ data, we formed a
surface reflectance library with selected examples of soil and non-
photosynthetic vegetation from community-standard historical datasets
(Serbin et al., 2018; Elvidge, 1990). We also appended the in situ
spectra from the field experiment. We then formed field-average remote
spectra from a rectangular area of about 400 m2 around the sample
sites, and then matched these with nonnegative weighted combinations
of library endmember spectra. Fits by a nonnegative least squares solver
(Lawson and Hanson, 1995) produced just a few nonzero weighting
coefficients, indicating that the spectra were well-described by a linear
combination of the three classes. Fig. 7 shows the components and
model result for the Karnataka III site. Note that we only used this linear

Table 2
Performance of three different retrieval methods for the in situ validation ex-
periments: Standard atmospheric correction using heuristic sequential surface/
atm retrievals (S), Optimal Estimation using a stock rural aerosol model (OE-R),
and Optimal Estimation with the mixture of three canonical aerosol optical
types (OE).

ρs Spectral Angle ρs RMSE

Site S OE-R OE S OE-R OE

Kar-I: 0.054 0.049 0.045 0.007 0.006 0.006
Kar-II: 0.030 0.025 0.024 0.006 0.005 0.005
Kar-III: 0.028 0.019 0.018 0.006 0.004 0.004
Des-I: 0.046 0.037 0.039 0.019 0.016 0.022

Boldface signifies the best performance.

Fig. 6. Desalpar Playa, Gujarat Province, India. A spectralon panel, leveling
tripod, and a tarp target used for localization are visible in the background.
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mixture to upscale the field reflectance at 5m resolution for comparison
with the remote measurement. In contrast, the airborne retrieval always
represented the surface with regularized multivariate Gaussians.

We calibrated the AVIRIS-NG data to radiance units while cor-
recting for electronic effects and spectral response tails (Zong et al.,
2006; Thompson et al., 2018a). We then produced georectified data
cubes and ascribed geographic coordinates following standard practice.
Finally, we performed MAP and MCMC estimation with each remote
spectrum. For all three validation sites, we compared OE performance
to the standard AVIRIS-NG atmospheric correction (Gao et al., 1993;
Thompson et al., 2015), a sequential retrieval of atmosphere and sur-
face. It estimated H2O vapor using the top of atmosphere reflectance
profile in several narrow absorption features. It did not estimate aerosol
parameters, but instead relied on a rural aerosol model with 50 km
visibility. This default was a compromise for large-scale production
products, and formed the official reflectance data from the India cam-
paign. The standard algorithm used multiplicative factors to reduce
systematic residual errors from instrument sampling and radiative
transfer uncertainties (Thompson et al., 2015). Following long-standing
practice for airborne instruments such as AVIRIS-C and AVIRIS-NG, we
had calculated these channelwise correction coefficients vicariously in
advance from a spectrally smooth target imaged early in the campaign.
We held them near unity to avoid altering absolute radiometry. We
compared retrieval accuracy with in-situ data using the spectral angle
and Root Mean Squared Error (RMSE). We also compare the predicted
posterior confidence to the realized error, budgeting two independent
1% uncertainties to the in-situ data to account for both the spectro-
meter calibration and spectralon reflectance BRDF.

Next we compared the algorithms' performance on a multi-site set of
over 20 distinct scenes surveyed by the campaign, analyzing rectan-
gular regions with approximately 18,000 distinct spectra per scene and
inverting atmospheric parameters independently for each spectrum.
Fig. 8 shows typical flightlines from the first two flight days, with dense
urban areas, partly vegetated cropland mosaics, and the wildland in-
terface. Aircraft altitudes of 4–8 km produced 4–8m Ground Sampling
Distances (GSDs). Many flightlines showed moderate atmospheric
aerosol and water vapor loading, with estimated AODs exceeding 0.5
and water vapor at or above 3.0 g cm−2.

We calculated several retrieval quality metrics. The score q from
Thompson et al. (2018a) measured reflectance roughness in the ab-
sorption band at 1140 nm to diagnose aerosol or surface interference
with the water vapor correction (Guanter et al., 2008; Gao and Goetz,
1990). It is the difference between the estimated reflectance with and
without smoothing by a 5-channel moving average, accounting for the
noise contribution σREF using a reference interval outside the absorption
feature:
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where ρs was the smoothed reflectance, the H2O summation spanned
1087 to 1162 nm with nH2O channels, and the reference region spanned
1002 to 1077 nm with nREF channels. This permitted a noise-invariant
error metric q(x):

= −q ρ σ σ( )s H O REF
2 2

2 (11)

A second performance score quantified surface-induced biases in the
H2O column retrieval. Surface materials with overlapping absorption
features could disrupt vapor absorptions and consequently the retrieved
amount. One such interfering feature was liquid water in vegetation,
which occasionally survived the compensatory algorithms described in
Thompson et al. (2015). We fit a simple linear relationship mapping the
surface albedo and NDVI to the H2O prediction and used the H2O
variance explained as an additional performance score. A third per-
formance statistic was the total standard deviation of the H2O vapor
retrieval. Since we intentionally limited this study to small subscenes,
the water vapor column was expected to be nearly constant favoring
smaller standard deviations. Finally, we compared the retrieved
AOD550 to MODIS Terra observations acquired from the same day,
averaging MODIS MOD04 AOD550 retrievals within a one degree la-
titude grid square around the flight. There was no exact spatiotemporal
coincidence so we expected some divergence. However, the approx-
imate MODIS alignment was an independent check on broader-scale
regional trends.

Multi-spectrum AOD calculations should consider the different
surfaces in the scene and the varied information provided by each.
Fig. 9 shows an example of retrieval variability for a scene with diverse
surface materials. The top panel shows AVIRIS-NG data in visible wa-
velengths, revealing regions of dark green vegetation as well as bare
soil annotated by (a) and (b) symbols respectively. The dark green
vegetation lies in a region of the surface probability distribution with
stronger spectral constraints (particularly on short wavelengths). Con-
sequently, these retrievals are expected to be more accurate. The
middle panel shows the AOD550 retrieval, which depends somewhat on
the surfaces; AODs over bare areas are less extreme thanks to influence
by the prior. This is consistent with the bottom panel showing high
marginal predicted AOD550 uncertainty in the bare soil areas. To de-
termine the best prediction for the whole scene, we simply average the
predictions of the most confident 5% of spectra. This is a simple ap-
proach; a more sophisticated and accurate solution might infer a
smooth atmospheric field from all spectra (Thompson et al., 2018c).

5. Results

We first illustrate the spectroscopic cues influencing retrieved at-
mosphere and surface values. Averaging kernels (i.e. rows of the A

Fig. 8. Example flightline segments from the India campaign. The top three
panels show Dec. 18, 2015 segments with dense urban cover (Kalaburagi,
Telangana Province, top panel), the wilderness interface (top middle panel),
and cropland (bottom middle panel). The bottom panel shows a typical wild-
erness segment from the following flight day.

Fig. 9. Example of retrieval variability for a scene with diverse surface mate-
rials. Top: AVIRIS-NG visible wavelengths, showing regions of dark green ve-
getation (a) as well as bare soil (b). Middle: AOD550 retrieval, which varies
slightly due to the different constraints resulting from the surfaces. Bottom:
posterior uncertainty predictions. See text for explanation.
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matrix) indicate appropriate spectroscopic features associated with the
atmospheric elements of the state vector. To review, the A matrix shows
the estimates' sensitivities to changes in the true state. The India cam-
paign averaging kernels suggest all atmospheric parameters can get
some information from the shapes of water vapor absorptions. Fig. 10
shows three representative kernels near the 940 nm H2O vapor ab-
sorption, calculated at the solution state for site Kar-III. The left panel
shows the averaging kernel for the H2O parameter. An arrow indicates
that this state element responds to a deeper H2O absorption. The middle
panel shows AOD for Aerosol type A, which is derived from soot and
has a low SSA. Here a narrow, deep H2O feature combined with a lower
continuum indicates high AOD, since together they suggest a uniform
attenuation due to aerosol absorption. The right panel shows spectro-
scopic features indicating high AOD for Aerosol type C, which is derived
from sulfate and has a high SSA. Here, a high continuum and a broad,
shallow H2O feature suggest a uniform additive path radiance effect
that reduces the fraction of photons reaching the low dense layers of
tropospheric water vapor. We note again that aerosol vertical dis-
tributions were presumed uniform within a 3 km thick layer. Other
vertical distributions might produce the same spectrum perturbations
with different aerosol types and optical depths; however, they would be
corrected using the restricted palette of signatures available to the in-
version. For this reason and others, we caution against interpreting
retrieval outcomes as aerosol particle properties.

Fig. 11 compares AOD550 measurements by in-situ sensors to the
remote total AOD550. The error bars show predicted standard devia-
tions. In the AVIRIS-NG case, these predictions come from the marginal
AOD550 uncertainties combined in quadrature. We derive uncertainty
of the in situ sensor based on the sequence of acquisitions acquired
within 1 h of the flightline start. We find the in situ and remote methods
to be broadly consistent; the correlation coefficient r=0.83 implies a
good match, and the values align to within expected errors.

The averaging kernels show how atmospheric parameters respond
to different perturbations of the reflectance continuum. This compen-
satory change can come either from reflectance or atmosphere, to a
degree determined by the balance of measurement and prior informa-
tion. Specifically, iit depends on the observation uncertainty (a com-
bination of calibration unknowns and measurement noise) versus the
strength of the prior distribution. Fig. 12 illustrates this relationship for
the Desalpar (Site Des-I) spectrum. The contour plot shows the mean
spectral reflectance DOF for different sensor SNR assumptions and
regularization choices. For clarity, we plot the regularization term as a
standard deviation, i.e. =σ ηp . Contours show the mean Degrees of
Freedom (DOF) for the reflectance parameters for various values. We

have simplified this illustration for clarity; in the actual retrievals, both
SNR and the prior are spectrally-valued quantities with rich correla-
tions and covariance structures under full control of the designer. Also
note that, while SNR is defined by first principles in our experiments,
there is still some subjectivity in the budget for radiometric calibration
unknowns at the sub-percent level. These act as random variables
adding a small amount of additional noise. The main control on the
strength of the surface prior is the parameter η. Conditions that would
favor the prior include small values of η, or low-SNR observations.
Fig. 13 panels A and B show the converged estimate for low- and high-
DOF cases.

The Maximum A Posteriori solutions for validation sites align well
with the MCMC estimates. Fig. 14 shows reflectance terms of the state
vector, with the OE result in black showing linearized error estimates as
1σ error bars. The MCMC samples from the posterior reflectance dis-
tribution appear in red. Reassuringly, the MAP and MCMC estimates
align closely with the in situ model, suggesting that the linearized error
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Fig. 10. Atmospheric state vector responses to the H2O absorption feature at validation site III. Three panels plot rows of the A matrix (i.e. averaging kernels) that
indicate how each state vector element responds to the measured radiance (in grey, for reference). Left panel: averaging kernel for column H2O, which matches the
shape of the absorption feature. Middle panel: AOD for Aerosol type A (derived from soot, with a lower SSA). Right panel: Aerosol type C (derived from sulfate, with a
high SSA). See text for interpretations.
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estimate is a faithful representation of the true posterior error in surface
reflectance near the solution. This is not surprising, because radiance is
mostly linear with respect to small changes in surface reflectance.

Fig. 15 compares atmospheric parameters, where more nonlinear
relationships induce a small divergence between the two solutions. The
with the total combined aerosol optical depth on the horizontal axis and
the H2O vapor column estimate on the vertical axis. The black error
bars show 1σ uncertainty, with OE estimates in black and MCMC pos-
terior samples in red. A dashed line indicates the combined in situ
sunphotometer measurement at the time of the overflight, with 1σ as a

crossbar. The OE retrieval overestimates AOD550 in this flightline. This
is unlikely to be caused by the presence of multiple local minima (the
MCMC samples do not appear multimodal), but could be due to influ-
ence from the prior mean or by nonlinearity not captured by the mul-
tilinear lookup table or the iterative MAP retrieval. Regardless, the in
situ measurement and MCMC solution lie within the posterior standard
deviations, so both remote estimation methods are statistically con-
sistent with each other and with the in situ measurements.

Performance metrics are best for Optimal Estimation with the three
parameter aerosol representation. Fig. 16 shows the residual re-
flectances for each validation site, i.e. the difference against the models
calculated from in-situ data and the remote retrieval. Most residuals
are< 2% in absolute reflectance units. However, the conventional re-
trieval has residual “spikes” in water vapor bands and some departures
near deep absorption features. The OE case significantly improves these
artifacts. This is consistent with prior findings from Thompson et al.
(2018c) though in this case we compare OE to an alternative correction
code that differs in both the inversion approach (sequential and alge-
braic vs. Bayesian MAP) and the core Radiative Transfer model (6S vs.
MODTRAN 6.0). It is possible that differences in radiative transfer
calculations also contribute to the improvement in spectrum residuals.
Shaded areas represent 50% and 95% posterior uncertainty intervals on
the residual for the three-component OE model. Those residuals, re-
presented by the black lines, are broadly consistent with the predicted
confidences. Table 2 compares spectral angle and RMSE scores for the
standard method, OE using both a classic rural aerosol model (only
retrieving the total AOD550), and the three parameter aerosol model
(with AOD550 retrieved independently for each of the components).
Bold entries indicate the best scores.

Finally, Table 3 reports performance for the multi-flightline vali-
dation experiment. Columns indicate spectrum quality metrics q, the
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standard deviation of H2O estimates, and the fraction of variance ex-
plained by surface reflectance properties (NDVI). The best scores ap-
pear in boldface. The OE approach significantly outperforms, improving
spectrum quality metrics by factors of 2–10. The average overall im-
provement is 81.4%. Additionally, OE significantly reduces the variance
of column water vapor estimates. There is less improvement in the
fraction of that variance explained by surface properties. This is be-
cause, as noted previously, different surface types provide different
constraints on aerosols, and the AOD550 affects the level of water vapor
required to explain those absorption features. Insofar as the OE ap-
proach provides more accurate aerosol estimates than the fixed as-
sumptions used in the standard algorithm, it also enables better re-
trievals of column water vapor.

Fig. 17 relates the retrieved AOD550 values from AVIRIS-NGs to
those of the MODIS Terra MOD04 Aerosol product, with error bars
representing the standard deviations over flightlines and 1∘×1∘ grid
squares, respectively. All the measurements are consistent to within the
spatiotemporal variability. The correlation coefficient r=0.835 im-
plies that the airborne measurement explains 70% of the MODIS var-
iance.

The diverse India dataset also shows how OE can improve

atmospheric distortions under the more challenging conditions. Fig. 18
shows the relative (normalized) aerosol optical depths of the signatures
in two such scenes. The panel at left favors the type C aerosol profile,
which has a higher overall SSA than the other types. The spectrum
directly below shows a vegetation example from the scene, the point
having the highest estimated Normalized Difference Vegetation Index
(NDVI). We show the retrieval result from both standard and OE ap-
proaches. The column at right shows a similar comparison for an urban
scene that favors a higher fraction of aerosol type A, a signature derived
from soot particles with a lower SSA. The interference effects, such as
the shape of water vapor residuals and the distortion of the Visible-Near
Infrared vegetation reflectance profile near 400 nm, differ for the two
aerosol types. This fact, the overall improvement in residuals using OE,
and the consistent retrieval of a similar aerosol optical type from the
different spectra in each scene are all consistent with the claims that (1)
there is aerosol information in the spectroscopic data beyond total
AOD, and (2) our retrieval methodology is sensitive to these effects. The
experiments suggest that many reflectance errors in the standard ap-
proach are related to aerosol loading, and that the optimal estimation
retrieval improves these errors.

6. Discussion and conclusions

The India experiments yield several key outcomes. First, they show
that linearized posterior uncertainties (Cressie, 2018) generally agree
with MCMC estimates. They correspond best for surface terms, con-
sistent with Eq. 9 where the measured signal is nearly linear in surface
reflectance. Uncertainties also agree well for water vapor that draws
information from unsaturated absorption bands where the transmission
is approximately linear with respect to concentration (Thompson et al.,
2015) and thence with the measurement. Aerosols are more compli-
cated, exerting various wavelength-dependent attenuating and additive
effects. Not surprisingly, the linearized AOD uncertainty predictions
depart more significantly from the MCMC posterior.

Second, aerosol retrievals exploit subtle differences in the shape and
depth of atmospheric absorption features. This contrasts with conven-
tional heuristics (such as the dark green vegetation method) that rely on
more visually-obvious patterns. It underscores the benefits of full-
spectrum OE approaches for improving reflectance accuracy. Exploiting
the features for AOD estimation requires high accuracy in the under-
lying radiance. Small departures from the nominal spectral response
function due to spatial nonuniformity, internal scatter, or other stray
light effects, can artificially broaden atmospheric absorptions and dis-
tort the information present in these high-contrast signatures
(Thompson et al., 2018a). While AVIRIS-NG benefits from significant
attention to - and correction for - these effects, our tests suggest that
high-fidelity instrument design, radiance calibration, and reflectance
retrievals must all improve in concert to continue advancing atmo-
spheric retrievals.

Informed priors are a natural way to fine-tune the inversions. We
find the system is generally unimodal, so poor prior assumptions gen-
erally degrade performance gracefully by biasing retrieval results
without inducing catastrophic local optima. Here our reflectance priors
are intentionally under-constrained with regularization to represent
diverse surface spectra. We constrained surface distributions just en-
ough in key atmospheric intervals so that the implied spectral con-
tinuity would reveal information about the atmosphere, attributing (for
example) sharp H2O absorption signatures to the atmosphere rather
than the surface. Alternative “reflectance basemap” methods offer
stronger surface constraints for high numerical leverage on atmospheric
parameters.

There are several compelling directions for future investigations.
Further study could refine aerosol retrievals to extract and validate
useful atmospheric products. Here we treat aerosol contributions only
as structured error terms in the service of reflectance accuracy. This is
effective for surface studies but we cannot yet interpret the atmospheric
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retrievals directly as physical descriptions of aerosol particles. The re-
trievals imply some sensitivity to particle type, and a similar estimation
approach might someday yield useful products for atmospheric science.

However, this will require considerable study. Validating retrievals
would require a larger dataset of temporally-coincident in situ or
AERONET measurements.

Another fruitful area for future work is the combination of retrievals
at multiple spatial locations to infer smooth atmospheric fields.
Factorizations using probabilistic approaches might tie the atmospheric
parameters of nearby locations, allowing them to share information
spatially and recover a global Maximum A Posteriori estimate
(Thompson et al., 2018c). Efficient fixed-point approximations of this
global solution could likely achieve near-optimality at reasonable
computational cost.

Many factors in the observation conditions influence the ability to
retrieve aerosols accurately. Surfaces at or near the Critical Surface
Albedo (CSA) are independent of aerosol optical depth; this value
changes depending on aerosol optical properties as well as the obser-
ving geometry (Seidel and Popp, 2012). For the purposes of recognizing
distortions in atmospheric gas absorption features, it also depends on
ambient water vapor abundance. In general, retrievals based on H2O (or
any other) absorption feature use darker portions of the spectrum,
which generally improves the sensitivity for scattering aerosol while
reducing it for absorbing aerosols. The rich interplay between surface
albedo and aerosol optical properties highlights the benefit of multi-
spectrum retrievals over varied land cover types in an image to achieve
more accurate and physically interpretable aerosol estimates.

In summary, simulations, field validation experiments, and tests on
large historical catalogs, demonstrate Optimal Estimation's value for
improving surface reflectance retrievals under difficult atmospheric
conditions. The method significantly outperforms conventional se-
quential approaches for a wide range of surfaces. It improves the ac-
curacy of surface reflectances, as quantified by matches to field vali-
dation spectra and residual quality metrics. It also improves the
consistency of atmospheric retrievals, while reducing interference from

Table 3
Performance metrics for standard atmospheric correction (S) and OE surface/atmosphere estimation (OE) in the multiple-flightline test. Columns indicate spectrum
quality metrics q, the standard deviation of H2O estimates, and the variance explained by surface reflectance properties (NDVI and mean reflectance magnitude) for
both approaches. The best scores appear in boldface.

H2O Total Residual magnitudes (q×100) H2O Divergence (σ) NDVI Correlation

Flightline Content g cm−2 AOD550 S OE Improvemt. S OE S OE

ang20151218t104206 Urban 2.55 0.27 1.009 0.052 94.0% 0.317 0.116 0.282 0.061
ang20151218t110045 Interface 2.55 0.30 1.509 0.067 95.0% 0.265 0.101 0.193 0.157
ang20151219t080745 Rural 2.42 0.33 0.523 0.055 89.0% 0.152 0.085 0.084 0.000
ang20151219t081738 Mixed 2.48 0.30 0.545 0.052 90.0% 0.147 0.071 0.193 0.001
ang20151219t082648 Mixed 2.47 0.36 0.596 0.073 87.4% 0.142 0.095 0.040 0.133
ang20151219t083640 Mixed 2.40 0.31 0.578 0.059 89.4% 0.160 0.074 0.009 0.029
ang20151219t084554 Interface 2.44 0.31 0.586 0.056 89.9% 0.161 0.096 0.062 0.011
ang20151219t090522 Mixed 2.12 0.23 0.540 0.050 90.3% 0.120 0.074 0.000 0.212
ang20151219t091521 Mixed 2.18 0.22 0.566 0.041 92.3% 0.130 0.060 0.016 0.055
ang20151219t092432 Mixed 2.19 0.22 0.617 0.043 92.8% 0.104 0.054 0.004 0.051
ang20151219t093417 Mixed 2.14 0.22 0.571 0.047 91.6% 0.189 0.105 0.067 0.005
ang20151219t100816 Mixed 3.13 0.33 1.373 0.051 95.7% 0.278 0.118 0.054 0.029
ang20151219t102124 Mixed 3.06 0.38 1.499 0.074 94.3% 0.628 0.346 0.456 0.280
ang20151221t074416 Agriculture 3.10 0.45 0.964 0.076 90.5% 0.537 0.329 0.231 0.117
ang20151221t075709 Agriculture 3.23 0.47 0.964 0.081 90.3% 0.572 0.237 0.058 0.000
ang20151221t081709 Agriculture 3.19 0.45 1.000 0.070 91.9% 0.493 0.191 0.044 0.013
ang20151221t082836 Mixed 3.21 0.47 0.981 0.061 92.8% 0.268 0.089 0.029 0.099
ang20160101t060341 Forest 1.50 0.07 0.257 0.192 25.2% 0.070 0.007 0.000 0.055
ang20160102t055138 Forest 1.50 0.05 0.209 0.158 19.7% 0.024 0.000 0.227 0.000
ang20160105t051247 Forest 1.50 0.04 0.298 0.273 8.8% 0.062 0.009 0.001 0.008
ang20160107t053300 Forest 2.19 0.24 0.415 0.086 79.4% 0.288 0.158 0.119 0.247
ang20160110t053216 Mixed 2.77 0.37 0.677 0.075 88.6% 0.172 0.078 0.119 0.012
ang20160126t053344 Agriculture 3.19 0.56 0.784 0.065 91.2% 0.230 0.056 0.597 0.132
ang20160127t075428 Agriculture 2.19 0.33 0.463 0.050 88.6% 0.117 0.044 0.032 0.035
ang20160127t090913 Agriculture 1.98 0.25 0.369 0.040 88.9% 0.087 0.062 0.101 0.045
ang20160128t050943 Fallow 2.36 0.40 0.571 0.050 90.5% 0.090 0.048 0.000 0.067
ang20160223t060914 Urban 1.00 0.20 0.141 0.052 64.0% 2.715 0.022 0.048 0.455
ang20160303t051027 Urban 2.88 0.62 0.681 0.082 87.7% 0.427 0.101 0.375 0.051
ang20160303t054522 Urban 2.84 0.61 0.587 0.084 85.7% 0.388 0.113 0.130 0.018
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Fig. 17. Remote and AOD550 estimates from AVIRIS-NG and MODIS. Error
bars show 1σ predicted uncertainties. MODIS observations are not spatio-
temporally coincident. We create these mean estimates and standard deviations
from observations on the same day acquired within a 1 degree latitude/long-
itude window. The correlation coefficient is r=0.835.
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surface reflectance properties like liquid water absorption. Critically, it
permits principled retrieval of aerosol properties simultaneously with
surface and atmosphere, drawing information from the entire spectral
range. This is sufficient for good quality reflectance retrieval, though
the absolute accuracy of aerosol optical property retrievals requires
further validation. Stronger prior information on aerosol types, derived
from climatology or near-coincident direct observations, may provide
better absolute AOD and property accuracy. An alternative for studies
looking directly at aerosols would be to use a more specific surface
model, such as the reflectance “basemap” (Thompson et al., 2018c) or a
location-sensitive prior, providing very strong constraints on the sur-
face reflectance for accurate aerosol distortion estimates. The ability for
the designer to trade certainty in aerosols for surface reflectance, or vice
versa, allows the same algorithm framework to be used for both ob-
jectives. These advantages make Optimal Estimation a compelling tool
for atmosphere and surface retrievals in global VSWIR imaging spec-
troscopy missions.
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Appendix A. Aerosol climatology

We defined priors for the three aerosol type profiles by first identifying historical aerosol measurements on the Indian subcontinent, and then
matching these optical properties using the aerosol types in the retrieval. The flights define a set of four climatologically and geographically distinct
regions (Table A.6). We combined Level 2.0 data from the AERosol RObotic NETwork (AERONET) (Holben et al., 1998) at locations given in Table
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Fig. 18. Normalized AOD fractions for high-NDVI pixels from the first and last flightlines. Small differences in the proportion of aerosol type signatures show
demonstrably different distortions in vegetation spectra. Red and Black lines show the AVIRIS-NG standard product result and Optimal Estimation retrievals,
respectively. See text for explanation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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A.4. We used only the campaign timespan, the months from December through March, calculating average and standard devations of the vertical
total optical depth and single-scattering albedo. Determining the optical depths of the aerosol types which would match these distributions is
tantamount to the problem of inferring the probability of specific aerosol optical depths τ for each aerosol type, given the AERONET observations,
written P(τA, τB,τC|τAERONET,SSAAERONET). We solve this by Monte Carlo integration over the PDF, drawing uniform samples from the distribution of
[τA, τB,τC] described in Table A.5 below. We translate these to a total optical depth and single scattering albedo in each AERONET wavelength, and
weighting the samples by the AERONET probability density. This produced prior means and standard deviations illustrated in Table A.6.

Table A.4
AERONET sites used to develop the aerosol climatology.

Site Longitude Latitude Time Range

RM Nainital 79.458 29.359 2011–2012
Bareilly 79.437 28.390 2008
Bhola 90.750 22.167 2013–2015
Dhaka University 90.398 23.728 2012–2015
Gandhi College 84.128 25.871 2006–2017
Gual Pahari 77.150 28.426 2008–2010
ITT KGP EXT Kolkata 88.418 22.574 2009
Jaipur 75.806 26.906 2009–2016
Kanpur 80.232 26.513 2001–2017
Karachi 67.030 24.870 2006–2014
Kathmandu University 85.538 27.601 2009–2010
Lumbini 83.280 27.490 2013–2014
New Delhi 77.175 28.630 2009
Pune 73.805 18.537 2008–2016

Table A.5
Aerosol types A, B, and C are defined by scattering coefficients bsca, absorption coefficients babs, and asymmetry parameters a.

Type A Type B Type C

nm babs bsca a babs bsca a babs bsca a

0.35 1.8391 1.30516 0.42162 0.94842 0.30727 0.8845 1.46048 0 0.7915
0.4 1.55629 1.14103 0.3951 0.95625 0.26111 0.85364 1.38796 0 0.79994

0.45 1.3324 1.00577 0.37188 0.99889 0.20303 0.81806 1.26332 0 0.79898
0.5 1.15307 0.89343 0.35124 1.00992 0.18524 0.80336 1.12755 0 0.79224

0.55 1 0.79195 0.33357 1 0.13374 0.77345 1 0 0.78405
0.6 0.88138 0.71293 0.31658 1.06295 0.11655 0.76158 0.881 0 0.77258

0.65 0.78987 0.65208 0.3 1.07499 0.11179 0.75224 0.77434 0 0.76052
0.7 0.70724 0.59389 0.28541 1.07951 0.10077 0.74054 0.67877 0 0.74672

0.75 0.64333 0.54921 0.27093 1.09373 0.09657 0.7334 0.59691 0 0.73218
0.8 0.58901 0.51033 0.25723 1.11003 0.09293 0.72755 0.52369 0 0.71686
0.9 0.5071 0.45095 0.23111 1.14892 0.08706 0.7207 0.40759 0 0.68601
1 0.4435 0.40185 0.20834 1.19154 0.08171 0.71769 0.31774 0.00001 0.65199

1.25 0.33926 0.31884 0.15821 1.31666 0.07877 0.72091 0.17826 0.00006 0.56602
1.5 0.27489 0.26381 0.11889 1.3459 0.07666 0.72387 0.10263 0.00017 0.4765

1.75 0.23505 0.22845 0.09029 1.41198 0.07507 0.73009 0.06293 0.00026 0.37145
2 0.20405 0.19999 0.06994 1.45288 0.07787 0.73425 0.04133 0.00137 0.28568

2.5 0.16286 0.1611 0.04517 1.27444 0.0943 0.74201 0.01637 0.00202 0.17831

Table A.6
Aerosol types A, B, and C are defined by scattering coefficients bsca, absorption coefficients babs, and asymmetry parameters a.

Area Latitude range Longitude range Type A prior τ550 (σ) Type B prior τ550 (σ) Type C prior τ550 (σ)

0 >30∘ N – 0.074 (0.134) 0.120 (0.079) 0.435 (0.10)
1 < 30∘, ≥18∘ N <80∘ E 0.039 (0.10) 0.107 (0.276) 0.332 (0.115)
2 < 30∘, ≥18∘ N ≥80∘ E 0.070 (0.141) 0.106 (0.075) 0.537 (0.10)
3 <18∘ N – 0.068 (0.10) 0.10 (0.070) 0.296 (0.149)

References

Asner, G., Martin, R., Knapp, D., Tupayachi, R., Anderson, C., Sinca, F., Vaughn, N.,
Llactayo, W., 2017. Airborne laser-guided imaging spectroscopy to map forest trait
diversity and guide conservation. Science 355, 385–389.

Babu, S.S., Manoj, M.R., Moorthy, K.K., Gogoi, M.M., Nair, V.S., Kompalli, S.K., Satheesh,
S.K., Niranjan, K., Ramagopal, K., Bhuyan, P.K., Singh, D., 2013. Trends in aerosol
optical depth over indian region: potential causes and impact indicators. Journal of
Geophysical Research: Atmospheres 118, 11,794–11,806.

Babu, K.N., Mathur, A.K., Thompson, D.R., Green, R.O., Patel, P.N., Prajapati, R.P., Bue,
B.D., Geier, S., Eastwood, M.L., Helmlinger, M.C., 2019. An empirical comparison of
calibration and validation methodologies for airborne imaging spectroscopy. Current
Science 116 (7), 1101–1107.

Bedard, M., 2008. Optimal acceptance rates for metropolis algorithms: moving beyond
0.234. Stoch. Process. Appl. 118, 2198–2222.

Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., van den Bosch, J., 2014.
Modtran® 6: A Major Upgrade of the Modtran® Radiative Transfer Code. pp. 1–4.

Bernstein, L., Adler-Golden, S., Sundberg, R., Levine, R., Perkins, T., Berk, A., Ratkowski,
A., Felde, G., Hoke, M., 2005. Validation of the quick atmospheric correction (QUAC)

D.R. Thompson, et al. Remote Sensing of Environment 232 (2019) 111258

13

http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0005
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0005
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0005
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0010
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0010
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0010
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0010
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0015
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0015
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0015
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0015
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0020
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0020
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0025
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0025
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0030
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0030


algorithm for VNIR-SWIR multi-and hyperspectral imagery. Defense and Security
668–678.

Conel, J.E., Green, R., Vane, G., Bruegge, C., Alley, R., 1987. Ais-2 radiometry and a
comparison of methods for the recovery of ground reflectance. In: Proceedings of the
3rd Airborne Imaging Spectrometer Data Analysis Workshop. vols. 87-30. pp. 18–47.

Cressie, N., 2018. Mission CO2ntrol: a statistical scientist's role in remote sensing of at-
mospheric carbon dioxide. J. Am. Stat. Assoc. 113, 152–168.

Dennison, P.E., Roberts, D.A., 2003. The effects of vegetation phenology on endmember
selection and species mapping in southern California chaparral. Remote Sens.
Environ. 295–309.

Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D.,
Slutsker, I., 2002. Variability of absorption and optical properties of key aerosol types
observed in worldwide locations. J. Atmos. Sci. 590–608.

Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J.L., Ducos, F.,
Sinyuk, A., Lopatin, A., 2011. Statistically optimized inversion algorithm for en-
hanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite
observations. Atmospheric Measurement Techniques 975–1018.

Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F., Lopatin, A.,
Chaikovsky, A., Torres, B., Derimian, Y., et al., 2014. GRASP: a versatile algorithm for
characterizing the atmosphere. SPIE Newsroom. https://doi.org/10.1117/2.
1201408.005558.

Dudley, K.L., Dennison, P.E., Roth, K.L., Roberts, D.A., Coates, A.R., 2015. A multi-tem-
poral spectral library approach for mapping vegetation species across spatial and
temporal phenological gradients. Remote Sens. Environ. 121–134 (Special Issue on
the Hyperspectral Infrared Imager (HyspIRI)).

Elvidge, C.D., 1990. Fresh and dry spectra of several plant tissues and chemical and
phenological constituents (data set). In: Ecological Spectral Information System
(EcoSIS), (Last access: 19 Sept. 2018).

ESAS, 2018. Thriving on our Changing Planet: A Decadal Strategy for Earth Observation
from Space. A Report by the Decadal Survey on Earth Science and Applications from
Space. The National Academies Press. Available online at, Washington, DC. http://
sites.nationalacademies.org/DEPS/esas2017/index.htm, Accessed date: January
2018.

Fichot, C.G., Downing, B.D., Bergamaschi, B.A., Windham-Myers, L., Marvin-DiPasquale,
M., Thompson, D.R., Gierach, M.M., 2015. High-resolution remote sensing of water
quality in the San Francisco Bay–Delta estuary. Envir. Sci. Tech. 573–583.

Frankenberg, P.U.C., Wagner, T., 2005. Retrieval of CO from SCIAMACHY onboard
ENVISAT: detection of strongly polluted areas and seasonal patterns in global CO
abundances. Atmos. Chem. Phys. 1639–1644.

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang,
X., 2010. Modis collection 5 global land cover: algorithm refinements and char-
acterization of new datasets. Remote Sens. Environ. 168–182.

Gao, B.C., Goetz, A.F., 1990. Column atmospheric water vapor and vegetation liquid
water retrievals from airborne imaging spectrometer data. Journal of Geophysical
Research: Atmospheres 95, 3549–3564.

Gao, B.-C., Kaufman, Y.J., 2003. Water vapor retrievals using moderate resolution ima-
ging Spectroradiometer (MODIS) near-infrared channels. Journal of Geophysical
Research: Atmospheres 108.

Gao, B.C., Heidebrecht, K.B., Goetz, A.F., 1993. Derivation of scaled surface reflectances
from AVIRIS data. Remote Sens. Environ. 165–178.

Gao, B.-C., Montes, M.J., Davis, C.O., Goetz, A.F., 2009. Atmospheric correction algo-
rithms for hyperspectral remote sensing data of land and ocean. Remote Sens.
Environ. S17 – S24 (Imaging Spectroscopy Special Issue).

Gelman, A., Shirley, K., et al., 2011. Inference from simulations and monitoring con-
vergence. In: Handbook of Markov Chain Monte Carlo. vol. 6. pp. 163–174.

Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), 1996. Markov Chain Monte Carlo in
Practice. Chapman and Hall, London.

Guanter, L., Gómez-Chova, L., Moreno, J., 2008. Coupled Retrieval of Aerosol Optical
Thickness, Columnar Water Vapor and Surface Reflectance Maps from ENVISAT/
MERIS Data over Land.

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T.,
Hollstein, A., Rossner, G., Chlebek, C., et al., 2015. The EnMAP spaceborne imaging
spectroscopy mission for earth observation. Remote Sens. 8830–8857.

Higurashi, A., Nakajima, T., 1999. Development of a two-channel aerosol retrieval al-
gorithm on a global scale using noaa avhrr. J. Atmos. Sci. 924–941.

Hobbs, J., Braverman, A., Cressie, N., Granat, R., Gunson, M., 2017. Simulation-based
uncertainty quantification for estimating atmospheric co$_2$ from satellite data.
SIAM/ASA Journal on Uncertainty Quantification 5, 956–985.

Hochberg, E.J., 2011. Remote sensing of coral reef processes. In: Coral Reefs: An
Ecosystem in Transition, pp. 25–35.

Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J., Setzer, A., Vermote, E., Reagan,
J.A., Kaufman, Y., Nakajima, T., et al., 1998. Aeronet-a federated instrument network
and data archive for aerosol characterization. Remote Sens. Environ. 1–16.

Hou, W., Wang, J., Xu, X., Reid, J.S., Han, D., 2016. An algorithm for hyperspectral
remote sensing of aerosols: 1. Development of theoretical framework. J. Quant.
Spectrosc. Radiat. Transf. 178, 400–415.

Hou, W., Wang, J., Xu, X., Reid, J.S., 2017. An algorithm for hyperspectral remote sensing
of aerosols: 2. Information content analysis for aerosol parameters and principal
components of surface spectra. J. Quant. Spectrosc. Radiat. Transf. 192, 14–29.

Iwasaki, A., Ohgi, N., Tanii, J., Kawashima, T., Inada, H., 2011. Hyperspectral imager
suite (HISUI)-japanese hyper-multi spectral radiometer. In: Proceedings of the 2011
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.
1025–1028.

Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., Guralnick,
R., Kattge, J., Latimer, A.M., Moorcroft, P., Schaepman, M.E., 2016. Monitoring plant
functional diversity from space. Nat. Plants 2 (3), 16024.

Keshava, N., Mustard, J.F., 2002. Spectral unmixing. IEEE Signal Process. Mag. 44–57.
King, M.D., Menzel, W.P., Kaufman, Y.J., Tanré, D., Gao, B.-C., Platnick, S., Ackerman,

S.A., Remer, L.A., Pincus, R., Hubanks, P.A., 2003. Cloud and aerosol properties,
precipitable water, and profiles of temperature and water vapor from modis. IEEE
Trans. Geosci. Remote Sens. 41, 442–458.

Kuhlmann, G., Hueni, A., Damm, A., Brunner, D., 2016. An algorithm for in-flight spectral
calibration of imaging spectrometers. Remote Sens. 1017.

Labate, D., Ceccherini, M., Cisbani, A., De Cosmo, V., Galeazzi, C., Giunti, L., Melozzi, M.,
Pieraccini, S., Stagi, M., 2009. The PRISMA payload optomechanical design, a high
performance instrument for a new hyperspectral mission. Acta Astronautica
1429–1436.

Lawson, C., Hanson, R., 1995. Solving Least Squares Problems. Society for Industrial and
Applied Mathematics, Philadelphia.

Levy, R., Mattoo, S., Munchak, L., Remer, L., Sayer, A., Patadia, F., Hsu, N., 2013. The
collection 6 modis aerosol products over land and ocean. Atmospheric Measurement
Techniques 2989.

Lin, C.-I., Baker, M., Charlson, R.J., 1973. Absorption coefficient of atmospheric aerosol: a
method for measurement. Appl. Opt. 1356–1363.

Lyapustin, A.I., Wang, Y., Laszlo, I., Hilker, T., Hall, F.G., Sellers, P.J., Tucker, C.J.,
Korkin, S.V., 2012. Multi-angle implementation of atmospheric correction for modis
(Maiac): 3. Atmospheric correction. Remote Sens. Environ. 385–393.

Perkins, T., Adler-Golden, S., Matthew, M., Berk, A., Bernstein, L., Lee, J., et al., 2012.
Speed and accuracy improvements in FLAASH atmospheric correction of hyper-
spectral imagery. Optical Engineering 111707–1-111707–7.

Reinersman, P.N., Carder, K., Chen, R., 1998. Satellite-sensor calibration verification with
the cloud-shadow method. Appl. Opt. 5541–5549.

Richter, R., Schläpfer, D., 2002. Geo-atmospheric processing of airborne imaging spec-
trometry data, part 2: atmospheric/topographic correction. Int. J. Remote Sens. 23,
2631–2649.

Ripley, B.D., 1987. Stochastic Simulation. Wiley, New York.
Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., Green, R., 1998. Mapping

chaparral in the Santa Monica mountains using multiple endmember spectral mixture
models. Remote Sens. Environ. 267–279.

Rodgers, C.D., 1976. Retrieval of atmospheric temperature and composition from remote
measurements of thermal radiation. Reviews in Geophysics and Space Physics 14,
609–624.

Rodgers, C.D., 1990. Characterization and error analysis of profiles retrieved from remote
sounding measurements. J. Geophys. Res. 5587–5595.

Rodgers, C.D., 1996. Information content and optimisation of high spectral resolution
measurements. In: Proceedings of the SPIE.

Rodgers, C.D., 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice.
pp. 2.

Schaepman, M.E., Ustin, S.L., Plaza, A.J., Painter, T.H., Verrelst, J., Liang, S., 2009. Earth
system science related imaging spectroscopy-an assessment. Remote Sens. Environ.
S123–S137.

Schläpfer, D., Hueni, A., R, R., 2018. Cast shadow detection to quantify the aerosol optical
thickness for atmospheric correction of high spatial resolution optical imagery.
Remote Sens. 25.

Seidel, F.C., Popp, C., 2012. Critical surface albedo and its implications to aerosol remote
sensing. Atmospheric Measurement Techniques 1653–1665.

Serbin, S., DuBois, S., Jablonski, A., Desai, A., Kruger, E., Townsend, P., 2018. Nasa
Hyspiri California Airborne Campaign Ground Target Spectra (Data Set). Ecological
Spectral Information System (EcoSIS) (Last access: 19 Sept. 2018).

Teillet, P., Fedosejevs, G., 1995. On the dark target approach to atmospheric correction of
remotely sensed data. Can. J. Remote. Sens. 374–387.

Theiler, J., 2012. The incredible shrinking covariance estimator. In: SPIE Defense,
Security, and Sensing. International Society for Optics and Photonics, pp. 83910P.

Thompson, D.R., Gao, B.-C., Green, R.O., Roberts, D.A., Dennison, P.E., Lundeen, S.R.,
2015. Atmospheric correction for global mapping spectroscopy: ATREM advances for
the HyspIRI preparatory campaign. Remote Sens. Environ. 64–77.

Thompson, D.R., Boardman, J.W., Eastwood, M.L., Green, R.O., Haag, J.M., Mouroulis, P.,
Gorp, B.V., 2018a. Imaging spectrometer stray spectral response: in-flight char-
acterization, correction, and validation. Remote Sens. Environ. 850–860.

Thompson, D.R., Guanter, L., Berk, A., Gao, B.-C., Richter, R., Schläpfer, D., Thome, K.J.,
2018b. Retrieval of Atmospheric Parameters and Surface Reflectance from Vswir
Imaging Spectroscopy Data. Surveys in Geophysics.

Thompson, D.R., Natraj, V., Green, R.O., Helmlinger, M., Gao, B.-C., Eastwood, M., 2018c.
Optimal estimation for imaging spectrometer atmospheric correction. Remote Sens.
Environ. 355–373.

Thompson, D.R., Cawse-Nicholson, K., Erickson, Z., Fichot, C.G., Frankenberg, C., Gao, B.-
C., Gierach, M.M., Green, R.O., Jensen, D., Natraj, V., Thompson, A., 2019. A unified
approach to estimate land and water reflectances with uncertainties for coastal
imaging spectroscopy. Remote Sensing of Environment 231, 111198 (in press).
https://doi.org/10.1016/j.rse.2019.05.017.

Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., Green, R.O., 2004. Using imaging
spectroscopy to study ecosystem processes and properties. BioScience 54, 523–534.

Verhoef, W., van der Tol, C., Middleton, E.M., 2017. Hyperspectral radiative transfer
modeling to explore the combined retrieval of biophysical parameters and canopy
fluorescence from FLEX - Sentinel-3 tandem mission multi-sensor data. Remote Sens.
Environ. https://doi.org/10.1016/j.rse.2017.08.006. (in press).

Vermote, E.F., Kotchenova, S., 2008. Atmospheric correction for the monitoring of land
surfaces. Journal of Geophysical Research: Atmospheres 113.

Wang, M., Antoine, D., Frouin, R., Gordon, H.R., Fukushima, H., Morel, A., Nicolas, J.-M.,
Deschamps, P.-Y., 2010. In: Wang, M. (Ed.), Reports of the International Ocean-
Colour Coordinating Group, IOCCG Report 10: Atmospheric Correction for Remotely-
Sensed Ocean-Colour Products. MacNab Print, Dartmouth, Canada, pp. 23 chapter 4.

D.R. Thompson, et al. Remote Sensing of Environment 232 (2019) 111258

14

http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0030
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0030
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0035
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0035
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0035
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0040
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0040
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0045
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0045
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0045
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0050
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0050
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0050
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0055
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0055
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0055
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0055
https://doi.org/10.1117/2.1201408.005558
https://doi.org/10.1117/2.1201408.005558
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0065
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0065
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0065
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0065
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0070
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0070
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0070
http://sites.nationalacademies.org/DEPS/esas2017/index.htm
http://sites.nationalacademies.org/DEPS/esas2017/index.htm
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0080
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0080
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0080
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0085
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0085
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0085
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0090
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0090
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0090
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0095
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0095
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0095
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0100
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0100
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0100
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0105
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0105
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0110
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0110
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0110
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0115
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0115
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0120
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0120
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0125
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0125
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0125
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0130
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0130
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0130
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0135
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0135
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0140
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0140
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0140
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0145
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0145
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0150
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0150
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0150
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0155
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0155
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0155
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0160
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0160
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0160
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0165
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0165
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0165
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0165
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0170
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0170
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0170
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0175
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0180
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0180
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0180
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0180
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0185
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0185
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0190
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0190
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0190
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0190
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0195
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0195
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0200
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0200
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0200
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0205
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0205
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0210
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0210
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0210
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0215
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0215
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0215
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0220
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0220
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0225
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0225
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0225
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0230
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0235
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0235
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0235
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0240
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0240
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0240
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0245
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0245
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0250
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0250
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0255
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0255
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0260
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0260
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0260
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0265
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0265
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0265
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0270
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0270
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0275
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0275
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0275
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0280
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0280
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0285
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0285
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0290
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0290
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0290
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0295
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0295
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0295
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0300
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0300
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0300
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0305
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0305
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0305
https://doi.org/10.1016/j.rse.2019.05.017
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0315
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0315
https://doi.org/10.1016/j.rse.2017.08.006
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0325
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0325
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0330
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0330
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0330
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0330


Xu, F., van Harten, G., Diner, D.J., Kalashnikova, O.V., Seidel, F.C., Bruegge, C.J.,
Dubovik, O., 2017. Coupled retrieval of aerosol properties and land surface reflection
using the airborne multiangle spectropolarimetric imager. Journal of Geophysical
Research: Atmospheres 122, 7004–7026.

Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., Morino, I., Yokota, T.,

2011. Retrieval Algorithm for CO2 and CH4 Column Abundances from Short-
Wavelength Infrared Spectral Observations by the Greenhouse Gases Observing
Satellite.

Zong, Y., Brown, S.W., Johnson, B.C., Lykke, K.R., Ohno, Y., 2006. Simple spectral stray
light correction method for array spectroradiometers. Appl. Opt. 1111–1119.

D.R. Thompson, et al. Remote Sensing of Environment 232 (2019) 111258

15

http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0335
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0335
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0335
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0335
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0340
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0340
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0340
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0340
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0345
http://refhub.elsevier.com/S0034-4257(19)30277-9/rf0345

	Optimal estimation of spectral surface reflectance in challenging atmospheres
	Introduction
	Background
	Method
	Single spectrum MAP estimation
	Monte Carlo sampling procedure
	Atmospheric and surface models

	Experimental approach
	Results
	Discussion and conclusions
	Acknowledgment
	Aerosol climatology
	References




